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Generalized chaotic synchronization regime is observed in the unidirectionally coupled one-dimensional
Ginzburg-Landau equations. The mechanism resulting in the generalized synchronization regime arising in the
coupled spatially extended chaotic systems demonstrating spatiotemporal chaotic oscillations has been de-
scribed. The cause of the generalized synchronization occurrence is studied with the help of the modified
Ginzburg-Landau equation with additional dissipation.
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Chaotic synchronization is one of the fundamental phe-
nomena actively studied recently �1,2�, having both impor-
tant theoretical and applied significance �e.g., used for infor-
mation transmission by means of deterministic chaotic
signals �3,4�, in biological �5� and physiological �6� tasks, for
controlling of lasers �7,8� and microwave systems �9�, etc.�.
Recently, several types of chaotic synchronization have been
observed in coupled nonlinear oscillators. These are the
phase synchronization �10�, generalized synchronization
�11�, lag synchronization �12�, intermittent lag �13�, and in-
termittent generalized �14� synchronization behavior, com-
plete synchronization �15�.

All synchronization types mentioned above are associated
with each other �see, for detail, Refs. �16–19��, but the rela-
tionship between them has not been completely clarified yet.
In particular, in our works �18–20� it was shown that the
phase, generalized, lag, and complete synchronization are
closely connected with each other and, as a matter of fact,
they are different manifestations of one type of synchronous
oscillation behavior of coupled chaotic oscillators called the
time-scale synchronization. For each type of synchronization
there are their own ways to detect the synchronized behavior
of coupled chaotic oscillators.

In the last decade synchronization of spatially extended
systems demonstrating spatiotemporal chaos has attracted
much interest. The possibility of the complete synchroniza-
tion and phase synchronization of spatially extended systems
such as coupled Ginzburg-Landau equations �2,21,22�,
coupled Kuramoto-Sivashinsky equations �23�, arrays of
coupled oscillators �24�, and coupled map lattices �2� has
been demonstrated recently. In particular, the experimental
phase synchronization has been observed for a plasma dis-
charge tube in Ref. �25�. In our work �9� we have shown that
the time-scale synchronization takes place in unidirectionally
coupled spatially extended electron-wave systems.

One of the interesting and intricate types of the synchro-
nous behavior of unidirectionally coupled chaotic oscillators
is the generalized synchronization �11�. The presence of the
generalized synchronization between the response xr�t� and

drive xd�t� chaotic systems means that there is a functional
relation xr�t�=F�xd�t�� between system states after the tran-
sient is finished. This functional relation F�·� may be smooth
or fractal. According to the properties of this relation, the
generalized synchronization may be divided into the strong
synchronization and weak synchronization, respectively �26�.
There are several methods to detect the presence of the gen-
eralized synchronization between chaotic oscillators, such as
the auxiliary system approach �27� or the method of calcu-
lating the conditional Lyapunov exponents �26�.

In this work we have used the auxiliary system approach
proposed first in Ref. �27�. We consider the dynamics of the
drive xd�t� and response xr�t� systems. At the same time we
also consider the dynamics of the auxiliary system xa�t�
which is identical to the response system xr�t� but starts with
the other initial conditions, i.e., xr�t0��xa�t0�. In the absence
of the generalized synchronization between the drive xd�t�
and response xr�t� systems, the phase trajectories of the re-
sponse xr�t� and auxiliary xa�t� systems share the same cha-
otic attractor but are unrelated. In the case of the generalized
synchronization the behavior of the response xr�t� and aux-
iliary xa�t� systems becomes identical after the transient dies
out �it may take much time �14�� due to the generalized syn-
chronization relations xr�t�=F�xd�t�� and xa�t�=F�xd�t��.
Obviously, in the case of the generalized synchronization the
condition xd�t�=xr�t� should be satisfied and the identity of
the response and auxiliary systems is a simpler criterion to
test the presence of the generalized synchronization rather
than finding the unknown functional relationship F�·�.

Note, that the generalized synchronization has been stud-
ied in detail only for the chaotic systems with a few degrees
of freedom and for the discrete maps �11,26,27�. In particu-
lar, in Ref. �28� we have shown that the behavior of the
response chaotic system in the regime of the generalized syn-
chronization is equal to the dynamics of the modified system
�with the additional dissipation� under the external chaotic
force. However, the generalized synchronization of the spa-
tially extended chaotic systems has not been studied in de-
tail. Here we note only Ref. �29� in which the occurrence of
the generalized synchronization in the spatially extended
model describing a chemical reaction has been found. The
mechanism of the establishment of the generalized synchro-
nization in the spatially extended chaotic systems is also
unclear.

*Electronic address: aeh@cas.ssu.runnet.ru
†Electronic address: alkor@cas.ssu.runnet.ru

PHYSICAL REVIEW E 72, 037201 �2005�

1539-3755/2005/72�3�/037201�4�/$23.00 ©2005 The American Physical Society037201-1

http://dx.doi.org/10.1103/PhysRevE.72.037201


In this paper we study numerically the generalized syn-
chronization of the unidirectionally coupled complex
Ginzburg-Landau equations �CGLE’s�. The Ginzburg-
Landau equation �GLE� is a fundamental model for the pat-
tern formation and turbulence description. This equation is
used frequently to describe many different phenomena in la-
ser physics �30�, chemical turbulence �31�, fluid dynamics
�32�, bluff body wakes �33�, etc. �see also Ref. �34��.

Let us consider two one-dimensional CGLE’s �21,34,35�
coupled unidirectionally,

�v
�t

= v − �1 − i�d��v�2v + �1 + i�d��v, v � �0,L� , �1�

�u

�t
= u − �1 − i�r��u�2u + �1 + i�r��u + ��v − u�, u � �0,L�

�2�

with periodical boundary conditions. Equation �1� describes
the drive system and Eq. �2� corresponds to the response one.
In our investigation the parameters of the drive systems are
chosen as �d=1.5, �d=1.5. To study the generalized syn-
chronization of the nonidentical systems we have chosen the
different values of control parameters ��r=4.0 and �r=4.0�
for the response system �2�. The choice of such values of the
control parameters results in the autonomous systems being
in the spatiotemporal chaotic regime. Parameter � determines
the strength of the unidirectionally dissipative coupling be-
tween the response and drive systems, the interaction of
them being in each point of space. For �=0, Eqs. �1� and �2�
describe two uncoupled complex fields u�x , t� , v�x , t�, each
of them obeying an autonomous GLE.

All calculations were performed for a fixed system length
L=40� and random initial conditions. The numerical code
was based on a semiimplicit scheme in time with finite dif-
ferences in space. In all simulations we used a time step �t
=0.0002 for the integration and a space discretization �x
=L /1024 �1024 mesh points�.

With the growth of the coupling strength � the generalized
synchronization between considered systems arises. The
value of the coupling strength corresponding to the onset of
the generalized synchronization is �=�GS�0.75. We de-
tected the presence of the generalized synchronization be-
tween unidirectionally CGLE’s with the help of the auxiliary
system approach �27�. As the auxiliary system ua�x , t�, we
consider the media described by GLE �2� which is identical
to the response system u�x , t� but starts with the other initial
spatial distribution, i.e., ua�x , t0��u�x , t0�. Figure 1 shows
the spatiotemporal distributions of the module of the differ-
ence between the states of the response and auxiliary systems
�u�x , t�−ua�x , t�� for cases of the absence �Fig. 1�a� small
value of coupling strength ���GS� and the presence �Fig.
1�b�, value of coupling strength ���GS� of the generalized
synchronization regime. In this figure one can see, that in the
second case the difference of the states of the response and
auxiliary systems in every point of space tends to be zero
after coupling begins, which means the presence of the gen-
eralized synchronization between the drive and response
CGLE’s.

To explain the mechanism of the generalized synchroni-
zation arising, following Ref. �28�, we consider the dynamics
of the response system �2� as the nonautonomous dynamics
of a modified spatially extended system,

�um

�t
= um − �1 − i�r��um�2um + �1 + i�r��um − �um,

um � �0,L� , �3�

under the external force ��v�. Note, that the term −�um

brings the additional dissipation into the modified GLE �3�.
So, the control parameter � increase may be considered as

a result of two cooperative processes taking place simulta-
neously. The first of them is an increase of the amplitude of
the external signal on the response system and the second
one is the growth of the dissipation in the modified spatially
extended system �3�. As a result of the second process, in the
modified system a decrease of the amplitude of chaotic os-
cillations is observed. At the coupling strength �=�0=1 in
the spatially extended system the stable homogenous spa-
tiotemporal state is established rigidly in space and time. In
Fig. 2, the dependence of the square of the amplitude of
oscillations �um

2 �x , t�� of the modified GLE �3� averaged over
space and time on the parameter � is shown �symbols ��.
One can easily see, that the averaged amplitude of oscilla-
tions decreases linearly with the growth of the dissipation
term −�um �i.e., with the increase of the coupling strength ��.

In work �28� it has been shown, that there are two mecha-
nisms of the generalized synchronization arising. The first of
them is determined by introducing the additional dissipation
in the response system by means of the dissipative term
�−�um�. If the generalized synchronization is observed in �1�
and �2� the modified system displays the periodic oscillations
and may undergo transition to the stable homogenous spa-

FIG. 1. �Color online� The dependence of the module of the
difference between the states of the response and auxiliary systems
�u�x , t�−ua�x , t�� for cases of absence �a� and presence �b� of the
generalized synchronization on time t and space x. The coupling
parameter between the drive and response systems has been se-
lected as �=0.4 in �a� and �=0.9 in �b�. The time moments marked
by arrows correspond to the coupling switching-on between the
drive and response systems.
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tiotemporal state with the growth of the parameter � �see
Ref. �28��. This mechanism of the generalized synchroniza-
tion arising is realized in the considered spatially extended
system at �=�0=1. Note, that for the considered systems the
generalized synchronization regime reveals at value of the
coupling strength �GS �it is marked by an arrow in Fig. 2�
which is less than the value of the coupling strength �0 at
which the stable spatiotemporal state is established �i.e.,
�GS��0�.

Such behavior is detemined by the second mechanism of
the generalized synchronization arising �28�. Let us consider
the dependence of the square of the external force amplitude
���v2�� averaged over space and time, influenced on the re-
sponse GLE from the drive system. This dependence is
shown in Fig. 2 �symbols ��. Figure 2 shows that the power
of the drive signal effecting the response system increases
rapidly with the coupling parameter growth. As a result, for
�=�GS, the power of the external force exceeds the level of
proper oscillations of the response system approximately by
3 times. It is clear, that in this case the great external force
moves the spatiotemporal state of the response system into
the regions of the phase space with the strong dissipation.
So, proper spatiotemporal chaotic dynamics of the modified
system �modified GLE� appears to be suppressed and the
generalized synchronization is observed for �GS��0. It is
important to note, that in the range of the coupling strength
�� ��GS,�0� the generalized synchronization arising is
caused by the simultaneous action of two mechanisms, each
of them brings the contribution to the establishment of the
synchronous regime.

So, in the considered spatially extended system the gen-
eralized synchronization arising is determined by two
mechanisms taking place simultaneously which causes the
suppression of proper chaotic spatiotemporal oscillations by
means of the additional dissipation introduced in the spa-
tially extended active system. In the case of unidirectionally
coupled CGLE the arising of the generalized synchronization

regime is caused by the following mechanisms. First, there is
the additional dissipative terms which results in a decrease of
the magnitude of own oscillations in the response spatially
extended active system. Second, we observed that the great
external signal destroys proper dynamics of the response sys-
tem and its phase state is moved into the regions of the phase
space with the strong dissipation. At the same time the si-
multaneous decrease of the amplitude of proper oscillations
takes place due to the first mechanism discussed above.

The last means, that the coupling strength �GS correspond-
ing to the onset of the generalized synchronization regime in
the spatially extended chaotic systems should not depend
strongly on the parameters of the drive system and �first of
all� should be defined by the properties of the modified re-
sponse system. This statement is illustrated in Fig. 3, where
the dependence of the coupling strength �GS corresponding
to the onset of the generalized synchronization regime on the
drive system control parameter �d and for the different val-
ues of the control parameters �r and �r of the response sys-
tem is shown. One can see that changing the drive system
parameters does not effect practically on the threshold �GS of
the generalized synchronization arising in the response sys-
tem with growth of the coupling strength �. It confirms the
consideration of the mechanisms of the generalized synchro-
nization regime arising in the coupled CGLE’s.

In conclusion, we have explained the generalized syn-
chronization arising in the unidirectionally coupled CGLE’s
and shown that the generalized synchronization in spatially
extended chaotic systems is determined by the additional dis-
sipation introduced into the response system. In this case the
coupling parameter increase is equivalent to the simulta-
neous growth of the dissipation and the amplitude of the
external signal.
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FIG. 2. The dependence of averaged power of the oscillations
�um

2 �x , t�� in the modified system ��� and the external force ampli-
tude ���v�x , t��2� ��� on coupling strength �. The value of the
parameter �GS corresponding to the onset of the generalized syn-
chronization regime is shown by an arrow.

FIG. 3. The dependence of the coupling strength �GS corre-
sponding to the onset of the generalized synchronization regime on
the drive system control parameter �d for the different values of the
control parameters �r=�r=3.0 ���, 3.5 ���, 4.0 ���, 5.0 ���, 6.0
��� of the response system.
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